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Abstract

Extremely large-scale multiple-input multiple-output (XL-MIMO) is crucial for satisfying the high data rate

requirements of the sixth-generation (6G) wireless networks. In this context, ensuring accurate acquisition of channel

state information (CSI) with low complexity becomes imperative. Moreover, deploying an extremely large antenna

array at the base station (BS) might result in some scatterers being located in near-field, while others are situated

in far-field, leading to a hybrid-field communication scenario. To address these challenges, this paper introduces

two stochastic gradient pursuit (SGP)-based schemes for the hybrid-field channel estimation in two scenarios.

For the first scenario in which the prior knowledge of the specific proportion of the number of near-field and

far-field channel paths is known, the scheme can effectively leverage the angular-domain sparsity of the far-field

channels and the polar-domain sparsity of the near-field channels such that the channel estimation in these two

fields can be performed separately. For the second scenario which the proportion is not available, we propose

an off-grid SGP-based channel estimation scheme, which iterates through the values of the proportion parameter

based on a criterion before performing the hybrid-field channel estimation. We demonstrate numerically that both

of the proposed channel estimation schemes achieve superior performance in terms of both estimation accuracy and

achievable rates while enjoying lower computational complexity compared with existing schemes. Additionally, we

reveal that as the number of antennas at the UE increases, the normalized mean square error (NMSE) performances

of the proposed schemes remain basically unchanged, while the NMSE performances of existing ones improve.

Remarkably, even in this scenario, the proposed schemes continue to outperform the existing ones.
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I. INTRODUCTION

The sixth-generation (6G) wireless communications promise to empower various emerging applications,

e.g., holographic telepresence, extended reality, connected and autonomous vehicles, etc [1]. To realize

these possibilities, extremely large-scale multiple-input multiple-output (XL-MIMO) has emerged as one

of the most pivotal techniques [2]-[4]. In practice, deploying an exceptionally large number of antennas

at the base station (BS) is the predominant method for implementing XL-MIMO systems [2], [5], [6]. In

this way, XL-MIMO systems can significantly enhance spectral efficiency (SE) by efficiently multiplexing

multiple users on the same time-frequency resource [6]-[8]. Furthermore, the substantial beamforming gain

resulting from large-scale antennas can provide enhanced spatial resolution [9], [10], and ensuring reliable

communications and marked gains in achievable data rates [7], [11], [12].

Compared with conventional massive MIMO (mMIMO) systems, the deployment of an extremely large

number of antennas in XL-MIMO systems introduces new electromagnetic (EM) characteristics that cannot

be overlooked [2], [4]. Specifically, the EM fields radiated from the antennas can be categorized into near-

field and far-field. The Rayleigh distance, typically adopted to distinguish between near-field and far-field,

can span distances ranging from hundreds of meters to even more [2], [13], [14]. This suggests that

scatters may be partially located in the far-field of the BS and partially in the near-field of the BS,

leading to a hybrid-field communication scenario within practical XL-MIMO systems. More importantly,

to achieve desired performance in XL-MIMO systems, precise acquisition of channel state information

(CSI) is essential. However, the intricate communication environment introduces significant challenges to

channel estimation in XL-MIMO systems, especially in hybrid-field scenarios.

A. Prior Works

From an EM region perspective, existing channel estimation schemes for XL-MIMO systems can be

classified into two categories, i.e., near-field channel estimation schemes [15]-[22] and hybrid-field channel

estimation schemes [23]-[32]. For near-field channel estimation, both the user equipment (UE) and scatters

are in the near-field of the BS. Given this near-field property, the XL-MIMO channel modeling should

consider the spherical wave characteristics instead of the planar wave characteristics typically associated

with the far-field, ensuring accurate characterization of near-field channels. For example, a polar-domain

representation of XL-MIMO channels was introduced, leveraging near-field array response vectors to



3

capture both distance and angle information [15]. Specifically, by utilizing the polar-domain transform

matrix proposed in [15], the XL-MIMO channel can be transformed into its equivalent polar-domain

representation, which exhibits remarkable sparsity. This observed sparsity has motivated the development

of several compressed sensing (CS)-based near-field channel estimation schemes [14]-[16] and deep

learning (DL)-based strategies [17]. Moreover, the spatial non-stationary property of XL-MIMO channels,

which is another emergent EM characteristic, should also be considered due to the extremely large array

aperture [18]-[20]. Furthermore, the authors in [21] and [22] considered not only user activity patterns

but also the spatial non-stationary property for XL-MIMO systems based on bilinear Bayesian inference.

The second category of XL-MIMO channel estimation addresses the hybrid-field scenario, where some

scatters are located in the far-field of the BS, while others are situated in the near-field of the BS. In

such scenarios, XL-MIMO channels usually comprise both near-field and far-field path components. To

address this, a hybrid-field channel model was introduced in prior work [23], which incorporated an

adjustable parameter to tune the proportion of near-field and far-field paths in the model. By leveraging

the polar-domain sparsity of near-field paths and the angular-domain sparsity of far-field paths, a hybrid-

field OMP channel estimation scheme was developed in [23]. The key idea of the hybrid-field OMP

is to separately estimate the far-field path components in the angular domain and the near-field path

components in the polar domain. To enhance estimation accuracy, several channel estimation schemes were

proposed based on the hybrid-field OMP in [23], such as the support detection OMP (SD-OMP) [24], the

convolutional autoencoder (CAE)-based OMP (CAE-OMP) [25], and the recursive information distillation

network (RIDNet)-based OMP (RIDNet-OMP) [26]. Furthermore, to address the need for prior knowledge

of the proportion of the number of near-field and far-field paths, the authors in [27] first determined this

proportion by systematically traversing all possible values and then performed channel estimation. On the

other hand, different from segmenting near-field and far-field paths for separate estimation, the authors in

[28] and [29] considered them as a whole and leveraged DL networks for hybrid-field channel estimation.

In addition, there are several channel estimation schemes that estimate the key parameters (i.e., channel

gain, angle, and distance parameters) to reconstruct hybrid-field XL-MIMO channels [30]-[32].

B. Our Contributions

Despite various efforts have been devoted to unlock the potential of XL-MIMO systems, there are

still various drawbacks in the existing results. For instance, several near-field channel estimation schemes
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TABLE I

COMPARISON OF RELEVANT LITERATURE WITH THIS PAPER.

Ref. Hybrid-field
Multi-antenna

UEs
Off-grid

Independent on the proportion of

near-field and far-field paths

Two distinct

sensing matrices
Deep learning

[16] % % ! − % %

[23] ! % % % ! %

[24] ! % % % ! %

[25] ! % ! % ! !

[26] ! % ! ! % !

[27] ! % % ! ! %

The proposed on-grid

hybrid-field SGP
! ! % % ! %

The proposed off-grid

hybrid-field SGP
! ! ! ! ! %

have focused solely on the characteristics of near-field channels, e.g., [15]-[22]. However, this approach

can lead to a mismatch with the structural characteristics of practical hybrid-field channels. Even worse,

applying this approach in practice may result in degraded performance in terms of NMSE in emerging

hybrid-field communication scenarios [23]. On the other hand, existing CS-based hybrid-field channel

estimation schemes have demonstrated subpar performance in low signal-to-noise ratio (SNR) scenarios

[23]-[27]. Additionally, it is worth noting that the majority of hybrid-field channel estimation schemes

have primarily focused on analyzing XL-MIMO systems in which the UE is only equipped with a single

antenna [23]-[29], [32]. However, in practice, UEs are already equipped with multiple antennas to achieve

higher SE performance and data rates. Indeed, compared to the scenario of a single-antenna UE, the

scenario of a multi-antenna UE introduces two very intuitive changes. Firstly, the signal dimensions that

need to be processed, which are already substantial due to the deployment of large-scale antennas at the

BS, will further increase. This, in turn, intensifies the challenges associated with achieving low-complexity

channel estimation. Secondly, the impact of increasing the number of antennas at the UE on the NMSE

performance of channel estimation has been insufficiently explored, especially in the context of hybrid-

field scenarios within XL-MIMO systems, e.g., [23]-[29], [32]. Consequently, it is imperative to conduct

a comprehensive analysis of the influence of the multiple-antenna UE on the performance of hybrid-

field channel estimation schemes in XL-MIMO systems. Moreover, it should be noted that the authors

of [23], [24], and [27] considered the angles and distances as discrete points within the angular and

polar domains (i.e., “on-grid”), respectively. Conversely, in practical systems, the angles and distances are

typically distributed continuously, known as “off-grid”. Addressing the resolution limitations inherent in
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these on-grid algorithms, the authors of [25], [26], [28]-[30] have turned towards DL-based algorithms for

enhancing hybrid-field channel estimation. While DL-based solutions offer significant NMSE performance

advantages under specific conditions [25], [26], [28]-[30], they also have significant limitations, such as

their applicability to other scenarios and dependence on a large number of high-quality datasets. Therefore,

the applicability and effectiveness of traditional off-grid algorithms within hybrid-field XL-MIMO systems

remain an area that warrants further investigation.

Motivated by the aforementioned studies, in this paper, we delve into a hybrid-field channel model with a

multi-antenna UE. Then, two novel stochastic gradient pursuit (SGP)-based hybrid-field channel estimation

schemes are proposed for different scenarios in XL-MIMO systems. The comparisons of relevant literature

with this paper are summarized in Table I. Our major contributions are outlined as follows.

• We consider a hybrid-field XL-MIMO system with a uniform linear array (ULA)-based BS and

a multi-antenna UE, where the channel is characterized by the superposition of two components,

i.e., the near-field and far-field channels. Subsequently, a novel on-grid hybrid-field SGP channel

estimation scheme is proposed to estimate the far-field and near-field path components individually

when the proportion of the number of near-field and far-field paths is known. More importantly, we

reveal the impact of the number of antennas at the BS and UE on the NMSE performance of the

proposed and existing schemes.

• To eliminate the reliance on prior knowledge of the proportion of the number of near-field and far-field

paths, we further introduce a modified off-grid hybrid-field SGP channel estimation scheme. This

novel approach does not rely on such prior knowledge, as required in existing works [23]-[25]. Instead,

it employs an iterative process to systematically determine the proportion by examining all possible

values. Moreover, the off-grid hybrid-field SGP employs an alternating minimization approach to

refine channel parameters. This can effectively address the resolution constraints associated with the

fixed grids in sensing matrices.

• We present numerical results to demonstrate the effectiveness of the proposed on-grid and off-grid

hybrid-field SGP, particularly in low SNR scenarios. Moreover, in contrast to the least-squares (LS)

process in the hybrid-field OMP [23], [27], our proposed on-grid and off-grid hybrid-field SGP adopt

the least mean squares (LMS) process to approximate the performance of the minimum mean-squared

error (MMSE) process. Therefore, the proposed schemes require lower complexity than that of the

hybrid-field OMP, yet remain resilient against noise. In addition, the superior NMSE performance
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achieved by the proposed schemes results in higher achievable rates1.

C. Organization and Notation

The rest of this paper is organized as follows. In Section II, we first present the signal model and then

introduce the characteristics and the sparsity of the hybrid-field channel. Next, the proposed hybrid-field

channel estimation schemes and their features, along with an analysis of their complexity, are presented in

Section III. Then, Section IV provides the numerical results and performance analysis. Finally, conclusions

are summarized in Section V.

Notation: We denote column vectors and matrices by boldface lowercase letters a and boldface upper-

case letters A, respectively. Conjugate, transpose, conjugate transpose, and pseudoinverse are represented

as (·)∗, (·)T , (·)H , and (·)† respectively. The M ×N real-valued matrix and the M ×N complex-valued

matrix are denoted by R
M×N and C

M×N , respectively. We represent the circularly symmetric complex-

valued Gaussian distribution by CN (0, σ2), where σ2 denotes the variance. The uniform distribution from

a to b is denoted by U(a, b). The Euclidean norm, the Kronecker product, and the N×N identity matrix are

denoted by ‖·‖, ⊗, and IN . We denote the N×1 vector with all elements being zero by 0N×1. E{·} and tr(·)
are the expectation operator the trace operator, respectively. The i-th row and j-th column of the matrix

A is denoted by A(i, j). The j-th column of the matrix A is represented as A(:, j). The vectorization

operation of the matrix A ∈ CM×N is denoted as vec (A) =
[
A(:, 1)T ,A(:, 2)T , · · · ,A(:, N)T

]T
. We

denote the round down operation by ⌊·⌋. The absolute value of a number or the determinant of a matrix

is represented as | · |.

II. SYSTEM AND CHANNEL MODEL

A. System Model

As illustrated in Fig. 1, an uplink time division duplexing (TDD) hybrid-field point-to-point commu-

nication scenario is considered in the XL-MIMO system, where the BS is equipped with a Nb-element

ULA and the UE2 is equipped with Nu antennas. We denote the antenna spacing by ∆ = λ/2, where λ is

1Simulation codes are provided to reproduce the results in this paper: https://github.com/BJTU-MIMO.
2In the case of an XL-MIMO system with multiple UEs, the channels between the BS and its different UEs can be modeled and treated

separately [6], [7]. In addition, when multiple UEs transmit orthogonal pilots, channel estimation can be performed independently by linearly

processing the received signal at the BS. Therefore, in this paper, we consider a typical UE equipped with multiple antennas in the considered

XL-MIMO system to simplify the analysis and discussion.
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BS

UE

Near-field scatterers Far-field scatterers

Rayleigh distance

Fig. 1. The hybrid-field communication scenario with a uniform linear array (ULA) at the BS in the XL-MIMO system, where the UE is

equipped with multiple antennas. The Rayleigh distance is a widely adopted boundary to separate near-field and far-field communications.

the carrier wavelength. Let H ∈ CNb×Nu denote the channel between the BS and the UE. When the UE

transmit its pilot signal with length τ , the received signals, Y ∈ CNb×τ , at the BS can be represented as

Y = HPΦT +N, (1)

where P ∈ CNu×Nu denotes the precoding matrix of the UE during the phase of pilot transmission,

Φ ∈ Cτ×Nu is the pilot matrix sent by the UE to the BS such that ΦTΦ∗ = τINu
, N ∈ CNb×τ denotes

the additive noise at the UE with independent identical distributed entries following CN (0, σ2), and σ2 is

the noise power. Note that the precoding matrix should satisfy the total power constraint tr
(
PPH

)
= p,

where p denotes the total transmit power of the UE.

To estimate H, the received signal is first correlated with the normalized pilot matrix Φ∗/
√
τ to obtain

Yt =
1√
τ
YΦ∗ ∈ C

Nb×Nu at the BS, which is given by

Yt =
1√
τ
HPΦTΦ∗ +

1√
τ
NΦ∗ =

√
τHP+Nt, (2)

where Nt =
1√
τ
NΦ∗ ∈ CNb×Nu is the equivalent noise.

B. Channel Model

It is interesting that the Rayleigh distance, denoted as dRayleigh = 2D2/λ, can extend to hectometre

range or longer in XL-MIMO systems, where D represents the array aperture. For instance, when the

array aperture is 1 meters and the carrier wavelength is 0.01 meters, the Rayleigh distance can reach 200

meters. Due to the expanded near-field in XL-MIMO systems, it is pertinent to account for the possibility
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that the XL-MIMO channel might encompass both far-field and near-field components, as shown in Fig. 1.

Therefore, in a hybrid-field communication scenario, the XL-MIMO channel can be characterized by the

superposition of two distinct components, i.e., the near-field channel and the far-field channel. In addition,

due to the spherical-wavefront in near-field and the planar-wavefront in far-field, their components should

be modeled separately.

Without loss of generality, we assume that the XL-MIMO channel consists of one dominated line-of-

sight (LoS) path and L−1 non-line-of-sight (NLoS) paths [34]. Then, based on the array response vectors

[14], the hybrid-field XL-MIMO channel H ∈ CNb×Nu can be modeled as

H =
√
NbNuᾱ0a (rR,0, θR,0)a

H (rT,0, θT,0)

+

√
NbNu

L− 1

L−1∑

l=1

αla (rR,l, θR,l)a
H (rT,l, θT,l)

(a)
=

√
NbNu

L− 1

L−1∑

l=0

αla (rR,l, θR,l)a
H (rT,l, θT,l),

(3)

where L3 is the total number of the path components and (a) holds by defining α0 =
√
L− 1ᾱ0. The

array response vectors of the LoS path at the BS and the UE are a (rR,0, θR,0) ∈ CNb×1 and a (rT,0, θT,0) ∈
C

Nu×1, respectively. The angle of the LoS path at the BS and the UE are θR,0 and θT,0, respectively. We

denote rR,0 = rT,0 as the distance between the BS and the UE. The the path gain of the LoS path is

denoted by ᾱ0 with ᾱ0 =
√
κ/(1 + κ) [34] while the gain of the l-th NLoS path is denoted by αl with

αl ∼ CN (0, σ2
l ), where σ2

l = 1/(1 + κ), ∀l ∈ {1, 2, · · · , L − 1}. We denote the power ratio of the LoS

and NLoS paths by the Rician factor κ ≥ 0 [34]. The array response vectors of the NLoS paths at the

BS and the UE are a (rR,l, θR,l) and a (rT,l, θT,l), ∀l ∈ {1, 2, · · · , L− 1}, respectively. More specifically,

the array response vectors a (rR,l, θR,l) and a (rT,l, θT,l), ∀l ∈ {0, 1, 2, · · · , L− 1}, which are determined

by the distances rR,l and rT,l, and are given by

a (rR,l, θR,l) =





a (θR,l) , if rR,l > dRayleigh,

a (rR,l, θR,l) , otherwise,

a (rT,l, θT,l) =





a (θT,l) , if rT,l > dRayleigh,

a (rT,l, θT,l) , otherwise,

(4)

respectively. To further unveil the features of the hybrid-field channel in XL-MIMO, the far-field and the

3In practice, various techniques can be exploited to estimate the number of paths L [35]. Thus, this paper assumes that L is known in

line with similar studies in [23]-[27] and centers on channel estimation given this knowledge, detailed in Section III.



9

near-field components are discussed in details as follows:

1) Far-field Channel: We assume that there are LF = ⌊γL⌋ far-field components among all the L

paths, where 0 ≤ γ ≤ 1 is an adjustable parameter. Then, the far-field channel Hfar−field ∈ C
Nb×Nu can

be modeled by the planar-wavefront, which can be expressed as [15], [34]

Hfar−field =

√
NbNu

L− 1

LF∑

lf=1

αlfa (θR,lf ) a
H (θT,lf ). (5)

Based on the planar-wavefront assumption, the far-field array response vectors are represented as [15],

[34]

a (θR,lf ) =
1√
Nb

[
1, e−jπθR,lf , · · · , e−j(Nb−1)πθR,lf

]H
,

a (θT,lf ) =
1√
Nu

[
1, e−jπθT,lf , · · · , e−j(Nu−1)πθT,lf

]H
,

(6)

respectively. where θR,lf and θT,lf are the angle of the lf-th far-field path at the BS and the UE, respectively.

Note that θR,lf = sin(υR,lf ) and θT,lf = sin(υT,lf ), where υR,lf ∈ (−π/2, π/2) and υT,lf ∈ (−π/2, π/2) are

the practical physical angles at the BS and the UE, respectively.

It is worth noting that the corresponding angular-domain representation HA
far−field ∈ CNb×Nu can be

derived from the channel Hfar−field based on the pair of discrete Fourier transform (DFT) matrices FR

and FT, which is given by

Hfar−field = FRH
A
far−fieldF

H
T , (7)

where FR = [a (θ1) , · · · , a (θnb
) , · · · , a (θNb

)] ∈ CNb×Nb and FT = [a (θ1) , · · · , a (θnu
) , · · · , a (θNu

)] ∈
CNu×Nu are unitary matrices, θnb

= 2nb−Nb−1
Nb

with nb = 1, 2, · · · , Nb, and θnu
= 2nu−Nu−1

Nu
with nu =

1, 2, · · · , Nu. Due to the limited scatterers (i.e., LF ≪ Nb) [36], [37], the angular-domain representation

HA
far−field displays remarkable sparsity. Indeed, this sparsity has been exploited by several CS-based channel

estimation schemes to effectively address far-field channel estimation problems [36], [37].

2) Near-field Channel: For modeling the near-field channel, in contrast to the planar-wavefront as-

sumption in the far-field, the near-field channel should be modeled by a spherical-wavefront. This means

that the far-field array response vectors must be substituted with the near-field array response vectors to

more accurately model the near-field channel4. As such, the near-field channel can be expressed as [14],

4It is worth noting that the far-field channel is a special case of the near-field channel. When the distance between the UE and the BS is

greater than the Rayleigh distance, the near-field channel will degenerate into a far-field channel. Besides, it is worth using an accurate (but

also complex) model in terms of attainable performance. There are already numerous studies suggesting that leveraging more accurate but

more complex near-field channel models can achieve better performance [6]-[11].
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[15]

Hnear−field=

√
NbNu

L− 1

LN∑

ln=1

αlna (rR,ln , θR,ln) a
H(rT,ln , θT,ln), (8)

where LN = L − LF is the number of near-field components among all the L paths. We denote the

near-field array response vectors at the BS and the UE by a (rR,ln, θR,ln) and a (rT,ln , θT,ln), respectively,

which can be denoted by [14]

a (rR,ln , θR,ln) =
1√
Nb

[e−j 2π
λ
(r

(1)
R,ln

−rR,ln
), · · · ,

e−j 2π
λ
(r
(Nb)
R,ln

−rR,ln
)]T ,

a (rT,ln , θT,ln) =
1√
Nu

[e−j 2π
λ
(r

(1)
T,ln

−rT,ln
), · · · ,

e−j 2π
λ
(r

(Nu)
T,ln

−rT,ln
)]T ,

(9)

respectively, where θR,ln (θT,ln) denotes the angle of the ln-th near-field path at the BS (UE) and rR,ln

(rT,ln) denotes the distance between the ln-th scatterer and the center of the antenna array of the BS

(UE). We denote the distance between the ln-th scatterer and the nb-th antenna of the BS by rnb

R,ln
=

√
(rR,ln)

2 + ω2
nb
∆2 − 2rR,lnωnb

∆sin
(
θR,ln

)
with ωnb

= 2nb−Nb−1
2

, nb = 1, 2, · · · , Nb. r
nu

T,ln
=
√

(rT,ln)
2 + ω2

nu
∆2 − 2r

denotes the distance between the ln-th scatterer and the nu-th antenna of the UE with ωnu
= 2nu−Nu−1

2
,

nu = 1, 2, · · · , Nu.

Note that far-field channels are well-known for exhibiting significant sparsity in the angular domain,

while near-field channels demonstrate pronounced sparsity in the polar domain [14], [15]. To transform the

near-field channel to its polar-domain representation, we first review the polar-domain transform matrices,

which can be expressed as [15]

DR =[a(rθ1,1, θ1), · · · , a(rθ1,m1 , θ1), · · · ,

a(rθ1,M1 , θ1), · · · , a(rθNb
,1, θNb

), · · · ,

a(rθNb
,mNb

, θNb
), · · · , a(rθNb

,MNb
, θNb

)],

DT =[a(rθ1,1, θ1), · · · , a(rθ1,m1 , θ1), · · · ,

a(rθ1,M1 , θ1), · · · , a(rθNu ,1
, θNu

), · · · ,

a(rθNu ,mNu
, θNu

), · · · , a(rθNu ,MNu
, θNu

)],

(10)

respectively, where the matrices DR ∈ CNb×Mb and DT ∈ CNu×Mu are the polar-domain transform matrices

at the BS and the UE, respectively. Each column of the matrix DR (DT) is an array response vector with the
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distance rθnb
,mnb

(rθnu ,mnu
) and the angle θnb

(θnu
), where mnb

∈ [1, 2, · · · ,Mnb
] (mnu

∈ [1, 2, · · · ,Mnu
])

and nb ∈ [1, 2, · · · , Nb] (nu ∈ [1, 2, · · · , Nu]). We denote the number of sampled distances at the sampled

angle θnb
(θnu

) by Mnb
(Mnu

). Thus, the numbers of all the sampled distances at the BS and the UE is

denoted by Mb =
∑Nb

nb=1Mnb
and Mu =

∑Nu

nu=1Mnu
, respectively.

Based on the matrices DR and DT, the corresponding polar-domain representation HP
near−field ∈ CMb×Mu

is given by

Hnear−field = DRH
P
near−fieldD

H
T . (11)

Then, the hybrid-field XL-MIMO channel H can be represented as

H = Hfar−field +Hnear−field

= FRH
A
far−fieldF

H
T +DRH

P
near−fieldD

H
T .

(12)

From (12), it can be seen that the hybrid-field channel is composed of a combination of far-field and near-

field channels. Therefore, if the specific number of the channel paths in far-field and near-field can be

determined, it becomes possible to estimate the far-field and near-field channels separately. Subsequently,

these estimated channels can be utilized to reconstruct the whole hybrid-field channel.

C. Uplink Data Transmission

When the UE transmits its information signal x = [x1, · · · , xNu
]T ∈ CNu×1 to the BS, the received

signal y ∈ C
Nb×1 at the BS is

y = HPux+ nu, (13)

where x ∼ CN (0, INu
), Pu ∈ CNu×Nu denotes the precoding matrix of the UE during the phase of uplink

data transmission, nu ∼ CN (0, σ2
uINb

) represents the independent receiver noise. Note that the matrix Pu

satisfies the power constraint tr
(
PuP

H
u

)
= p, where p denotes the total transmit power of the UE.

Let V ∈ CNb×Nu represent the receive combining matrix selected by the BS for the UE. Then, the

estimate of x can be given by

x̂ = VHHPux +VHn. (14)
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Based on (14), the achievable rate5 for the UE can be expressed as [7], [38]

R = E
{
log2

∣∣INu
+ΣHΞ−1Σ

∣∣} , (15)

where Σ = VHHPu, Ξ = σ2
uV

HV, and the expectation is with respect to the channel estimates. If

maximum ratio (MR) combining V = Ĥ is employed, the achievable rate in (15) can be reformulated as

R = E

{
log2

∣∣∣INu
+PH

u H
HĤ

(
σ2
uV

HV
)−1

ĤHHPu

∣∣∣
}
. (16)

From (16), it can be seen that the quality of channel estimation can directly affect the achievable rate,

which will be discussed in Section IV-B.

III. HYBRID-FIELD CHANNEL ESTIMATION

Before introducing the hybrid-field channel estimation, we first rewrite the received pilot signal Yt to

exploit the angular-domain sparsity for far-field and the polar-domain sparsity for near-field by plugging

(12) into (2), which can be represented as

Yt =
√
τFRH

A
far−fieldF

H
TP

+
√
τDRH

P
near−fieldD

H
TP+Nt.

(17)

According to vec (ABC) =
(
CT ⊗A

)
vec (B) [39], the matrix Yt can be reformulated as

yt =
√
τ
(
PTF∗

T ⊗ FR

)
hA
far−field

+
√
τ
(
PTD∗

T ⊗DR

)
hP
near−field + nt,

(18)

where yt = vec (Yt) ∈ C
NbNu×1, hA

far−field = vec
(
HA

far−field

)
∈ C

NbNu×1, hP
near−field = vec

(
HP

near−field

)
∈

CMbMu×1, and nt = vec (Nt) ∈ CNbNu×1. As discussed above, both the near-field polar-domain channel

hP
near−field and the far-field angular-domain channel hA

far−field exhibit remarkable sparsity. Therefore, the

channel estimation problem can be transformed into a sparse reconstruction problem and then several CS

algorithms can be utilized to solve this problem. For instance, the OMP algorithm was exploited to perform

hybrid-field channel estimation by estimating the near-field and far-field path components, respectively,

with the transform matrices [23]. Specifically, the OMP algorithm consists of two core procedures, i.e.,

5It is important to recognize that the DoF in a system are fundamentally dictated by the channel characteristics and serve as an indicator

of the system’s potential performance ceiling [2], [8]. Nevertheless, in practical signal processing and performance evaluation, reliance on

channel estimation data (which is typically imperfect CSI) is inevitable [38]. Therefore, achieving precise channel estimation is crucial for

tapping into the maximum achievable rate that the system can offer.
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the pursuing process and the LS process. However, due to the employment of the LS algorithm, the

performance of the signal reconstruction for the OMP is generally susceptible to noise [33]. Therefore,

the hybrid-field OMP channel estimation scheme cannot achieve satisfactory estimation accuracy in low

SNR scenarios.

To address this, the authors in [33] proposed a SGP algorithm by substituting the LS process with

the LMS process, which is a stochastic gradient approach to iteratively approximate the MMSE process.

Inspired by [23] and [33], the SGP algorithm is exploited to perform the hybrid-field channel estimation by

estimating the near-field and the far-field channels separately. In addition, the proposed hybrid-field SGP

channel estimation scheme are expected to exhibit robustness against noise. In the following subsections,

we will delve into our proposed hybrid-field channel estimation schemes from the perspective of whether

the scheme is independent on the prior knowledge of γ or not.

A. On-Grid Hybrid-Field SGP Channel Estimation With γ

The specific algorithm of the on-grid hybrid-field SGP channel estimation scheme with γ is succinctly

summarized in Algorithm 1. We denote the support sets for the far-field and the near-field path components

by ΩF and ΩN, respectively, initially set to empty sets. Let AF =
√
τ
(
PTF∗

T ⊗ FR

)
denote the sensing

matrix of the far-field path components. It is worth noting that employing a near-field sensing matrix

in the far-field is feasible. This is primarily because the far-field channel in (5) is a special case of the

near-field channel (8). However, due to the increased complexity and substantially higher dimensionality

of the near-field sensing matrix compared to its far-field counterpart, we have opted for the far-field

sensing matrix in our far-field estimation approach. The analysis of algorithm’s three phases is discussed

as follows.

1) Phase I: During this phase, the on-grid hybrid-field SGP iteratively estimates the far-field path

components in the angular domain, as shown in Steps 2-12. Specifically, LF supports, associated with

LF far-field path components in the angular domain, are determined over LF iterations. For the iteration

lf ∈ [1, 2, · · · , LF], the lf -th far-field support η is acquired by calculating the inner products between the

sensing matrix AF and the residual vector r, and subsequently identifying the most correlative column

index of AF with r, as shown in Step 3. Following this, the far-field support set will be updated in

Step 3. Leveraging the far-field support set ΩF, the LMS algorithm is employed to estimate the far-field

sparse vector ĥA
far−field for the current iteration with step size µ. Then, we update the residual vector r by
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Algorithm 1 The Proposed On-grid Hybrid-field SGP Channel Estimation Scheme with Prior Knowledge

γ.

Input: yt, P, FT, FR, DT, DR, L, τ , γ, µ
Output: Ĥ

Initialization: LF = γL, LN = (1− γ)L, ΩF = ΩN = ∅, r = yt.

// Phase I: Estimating the far-field path components in the angular domain.

1: AF =
√
τ
(
PTF∗

T ⊗ FR

)
, ĥA

far−field = 0NbNu×1.

2: for lf = 1, 2, · · · , LF do

3: Update the support set: η = argmax
n=1,2,··· ,N

∥∥AH
F (:, n) r

∥∥2
2
, ΩF = ΩF

⋃
η.

4: Perform the LMS process: x = ĥA
far−field(ΩF),

5: for n = 1, 2, · · · , NbNu do

6: c = Af(n,ΩF), d = y(n), e = d− cx,

7: x = x+ µecH ,

8: end for

9: ĥA
far−field(ΩF) = x.

10: Compute the residual vector: r = y −AFĥ
A
far−field.

11: end for

// Phase II: Estimating the near-field path components in the polar domain.

12: AN =
√
τ
(
PTD∗

T ⊗DR

)
, ĥP

near−field = 0MbMu×1.

13: for ln = 1, 2, · · · , LN do

14: Update the support set: η = argmax
n=1,2,··· ,N

∥∥AH
N (:, n) r

∥∥2
2
, ΩN = ΩN

⋃
η.

15: Perform the LMS process: x = ĥP
near−field(ΩN),

16: for n = 1, 2, · · · , NbNu do

17: c = AN(n,ΩN), d = y(n), e = d− cx,

18: x = x+ µecH ,

19: end for

20: ĥP
near−field(ΩN) = x.

21: Compute the residual vector: r = y −AFĥ
A
far−field −ANĥ

P
near−field.

22: end for

// Phase III: Reconstructing the hybrid-field channel.

23: Reshape the vectors ĥA
far−field and ĥP

near−field to the matrices ĤA
far−field ∈ CNb×Nu and ĤP

near−field ∈
CMb×Mu.

24: Reconstruct the hybrid-field channel: Ĥ = FRĤ
A
far−fieldF

H
T +DRĤ

P
near−fieldD

H
T .

subtracting the contributions of the estimated far-field path components, as shown in Step 11. Subseguently,

after LF iterations, we can finally obtain the estimated far-field path components ĥA
far−field.

2) Phase II: In this phase, the near-field sensing matrix AN =
√
τ
(
PTD∗

T ⊗DR

)
is exploited to

estimate the near-field path components in the polar domain. There are two main differences between

this phase (Steps 14-24) and the first phase (Steps 2-12). The first distinction is that the sensing matrix

employed in this phase is the near-field sensing matrix AN =
√
τ
(
PTD∗

T ⊗DR

)
, while the sensing

matrix employed in the first phase is the far-field sensing matrix AF =
√
τ
(
PTF∗

T ⊗ FR

)
. The second

difference lies in the residual update at this stage, which requires eliminating the contributions of both
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the estimated near-field paths components and the estimated far-field paths components from the residual.

3) Phase III: After estimating the vectors ĥA
far−field and ĥP

near−field, they are reshaped into matrices

ĤA
far−field and ĤP

near−field, respectively, constructing the entire estimated channel Ĥ based on (12), as

shown in Step 26. It is worth noting that the key difference between the proposed on-grid hybrid-field

SGP and the hybrid-field OMP in [23] lies in their approach to estimate the sparse vector in the each

iteration. Specifically, the proposed hybrid-field SGP exploits the LMS algorithm, differing from the LS

algorithm employed in the hybrid-field OMP. In this way, the on-grid hybrid-field SGP is expected to

outperform the hybrid-field OMP which will be verified in Section IV via simulations.

Note that the above hybrid-field SGP heavily relies on the prior known information of γ. Yet, in

practice, the specific number of the channel paths in far-field and near-field may not be always available

such that the value of γ is unknown. Therefore, in this scenario, the hybrid-field OMP in [23] and

the proposed on-grid hybrid-field SGP cannot be directly applied. Moreover, the algorithms previously

mentioned, including the hybrid-field OMP in [23], the SD-OMP in [24], the practical OMP in [27], and

the proposed on-grid hybrid-field SGP, all operate under the assumption that the distances and angles

correspond precisely to sampled points in the polar and angular domains, respectively. This assumption

inherently limits the estimation accuracy of these algorithms to the density of grid sampling points.

Building upon the insights from [15] and [27], we will introduce an off-grid hybrid-field SGP channel

estimation scheme in the following section. This new scheme does not require the prior known information

of γ and offers enhanced capabilities for refining channel parameters.

B. Off-Grid Hybrid-Field SGP Channel Estimation Without γ

For facilitating the design of the off-grid hybrid-field SGP without γ, we first reformulate the vector

yt as

yt = AFh
A
far−field +ANh

P
near−field + nt

= Ah̄+ nt,
(19)

where AF =
√
τ
(
PTF∗

T ⊗ FR

)
∈ C

(NbNu)×(NbNu), AN =
√
τ
(
PTD∗

T ⊗DR

)
∈ C

(NbNu)×(MbMu), A =

[AF,AN] ∈ CNbNu×(NbNu+MbMu), and h̄ =
[
hA
far−field,h

P
near−field

]
∈ C(NbNu+MbMu)×1. Then, the procedures

of the off-grid hybrid-field SGP is presented in Algorithm 2. Specifically, the off-grid hybrid-field SGP

can also be divided into three phases.
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Algorithm 2 The proposed Off-grid Hybrid-field SGP Channel Estimation Scheme without Prior

Knowledge γ.

Input: yt, AF, AN, A, L, ν

Output: Ĥ

Initialization: γ = 1, ΩF = ∅, r = y.

// Phase I: The coarse estimation of the far-field path components in the angular domain.

1: ĥA
far−field = 0NbNu×1.

2: for l = 1, 2, · · · , L do

3: Store residual vector: R(:, l) = r.

4: η = argmax
n=1,2,··· ,NbNu

∥∥AH
F (:, n) r

∥∥2, ΩF = ΩF
⋃

η.

5: Perform the LMS process: x = ĥA
far−field(ΩF),

6: for n = 1, 2, · · · , NbNu do

7: c = AF(n,ΩF), e = yt(n)− cx, x = x+ νecH ,

8: end for

9: ĥA
far−field(ΩF) = x.

10: Compute the residual vector: r = y −AFĥ
A
far−field.

11: end for

// Phase II: The precise estimation of the near-field path components in the polar domain.

12: rm = r, h̃ = ĥm = 0(NbNu+MbMu)×1, h̃(1 : NbNu) = ĥA
far−field, Ω = ∅.

13: for γ = L−1
L

: − 1
L
: 0 do

14: Ω = ΩF(1 : γL), r = R(:, γL+ 1).
15: for l = 1 : (1− γ)L do

16: η = argmax
n=1,2,··· ,MbMu

∥∥AH
N (:, n) r

∥∥2, Ω = Ω
⋃

η.

17: Perform the LMS process: x = h̃(Ω),
18: for n = 1, 2, · · · , NbNu do

19: c = A(n,Ω), e = yt(n)− cx, x = x+ νecH ,

20: end for

21: h̃(Ω) = x.

22: Compute the residual vector: r = y −Ah̃.

23: end for

24: if ‖r‖ ≤ ‖rm‖ then

25: Update the minimal residual vector: rm = r.

26: Update the sparse channel vector: ĥm = h̃.

27: end if

28: end for

// Phase III: Refining channel parameters.

29: for n = 1, 2, · · · , Niter do

30: Update the angles by θ̂n = θ̂n−1 − ζT1 ∇θ̂
L(r̂n−1, θ̂)|

θ̂=θ̂n−1 as in (25).

31: Update the distances by 1
r̂n

= 1
r̂n−1 − ζT2 ∇ 1

r̂

L(r̂, θ̂n)|̂r=r̂n−1 as in (26).

32: Update the path gains ĝn as in (23).

33: end for

34: Update the sparse channel vector: ĥ = ÂNiter ĝNiter .

35: Reshape the vectors ĥ to the channel matrix Ĥ.

1) Phase I: In this phase, we assume γ = 1 to perform the coarse estimation in far-field, assuming that

all the path components follow the far-field model. Consequently, the SGP algorithm can be employed to

perform the channel estimation, as shown in Steps 2-11. For the l-th iteration of Algorithm 2, in Steps 3,
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the residual vectors from the previous iteration are stored at R ∈ C
(NbNu)×1 with R(:, l) = r, aiding in the

adjustment of γ in the second phase. Next, the l-th far-field support is detected via the orthogonal pursuing

process, which is similar to Algorithm 1, as shown in Step 4. Based on the updated far-field support set,

the sparse vector ĥA
far−field(ΩF) of the current iteration can be obtained by the LMS algorithm with the

step size ν, as shown in Steps 5-9. Subsequently, the residual vector of the l-th iteration is updated in

Step 10.

2) Phase II: During this phase, we adjust γ to perform precise estimation in the near-field. We denote

the minimal of the residual vector by rm with the initialization of rm = r and the sparse channel vector

corresponding to rm by ĥm. Let h̃ denote the estimation of the channel vector h̄, which is initialized as

h̃ = 0(NbNu+MbMu)×1, h̃(1 : NbNu) = ĥA
far−field. Let Ω denote the set which includes the combination of

the far-field and near-field supports. Then, in Step 13, γ is adjusted from 1 to 0 with a step size of −1/L

to traverse all possibilities, aiming to acquire the minimal residual vector. It is worth noting that the initial

value of γ does not influence the results of the algorithm, as it iteratively explores all the values of γ.

Moreover, for an arbitrary value of γ, the corresponding γL far-field supports and residual vector have

been stored in ΩF(1 : γL) and R(:, γL+1) in the first phase, respectively. Therefore, the remaining task

is to search for the (1−γ)L near-field supports in the polar domain. Specifically, we first initialize Ω and

r as Ω = ΩF(1 : γL) and r = R(:, γL+1) in Step 14, respectively. Next, the SGP algorithm is exploited

to perform the remaining channel estimation, as shown in Steps 15-23. Notable, the goal of Step 16 is to

find the near-field supports and update them to the support set Ω. In addition, Steps 17-21 aim to recover

the sparse vector h̄ from the signal yt = Ah̄ + nt following the CS framework. Then, we update the

minimal residual vector rm and the sparse channel vector ĥm by comparing the norms of rm and r.

3) Phase III: According to the sensing matrices and the support set Ω, we can obtain the initial

value of the estimated distances r̂R,near = [r̂R,1, r̂R,2, · · · , r̂R,LN
]T , r̂T,near = [r̂T,1, r̂T,2, · · · , r̂T,LN

]T , an-

gles θ̂R,near = [θ̂R,1, θ̂R,2, · · · , θ̂R,LN
]T , θ̂T,near = [θ̂T,1, θ̂T,2, · · · , θ̂T,LN

]T , θ̂R,far = [θ̂R,1, θ̂R,2, · · · , θ̂R,LF
]T ,

θ̂T,far = [θ̂T,1, θ̂T,2, · · · , θ̂T,LF
]T and complex path gains ĝ = ĥm(Ω) ∈ CL×1. Then, these estimated

channel parameters can be utilized to construct the matrix

ÂF =
√
τ

√
p

Nu

[
a∗(θ̂T,1)⊗ a(θ̂R,1),

a∗(θ̂T,2)⊗ a(θ̂R,2), · · · , a∗(θ̂T,LF
)⊗ a(θ̂R,LF

)
]
,

(20)
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TABLE II

COMPUTATIONAL COMPLEXITY FOR DIFFERENT CHANNEL ESTIMATION SCHEMES BASED ON THE NUMBER OF COMPLEX-VALUED

MULTIPLICATIONS
5.

Scheme
The update of

the support set
The LS or LMS process

The update of

the residual

The reconstruction

of the channel

The hybrid-field

OMP with γ [23]

L

2 NbNu(NbNu

+MbMu)

2
L/2∑

l=1

( 1
2 l

3 + 3
2 l

2

+2NbNul
2 + NbNul)

L

2 NbNu(NbNu

+MbMu)

NbNu (Nb + Nu)

+NbMu (Nu + Mb)

The on-grid

hybrid-field SGP

L

2 NbNu(NbNu

+MbMu)
2

L/2∑

l=1

[NbNu (2l + 1)]

L

2 NbNu(NbNu

+MbMu)

NbNu (Nb + Nu)

+NbMu (Nu + Mb)

The hybrid-field

OMP without γ [27]

LN2
b
N2

u

+ 1
2L (1 + L)

×NbNuMbMu

L∑

l=1

( 1
2 l

3 + 3
2 l

2 +2NbNul
2 + NbNul)

+
L−1∑

i=0

L−i∑

l=1

( 1
2 l

3 + 3
2 l

2 +2NbNul
2 + NbNul)

LN2
b
N2

u

+L

2 (1 + L) [NbNu

×(NbNu + MbMu)]

NbNu (Nb + Nu)

+NbMu (Nu + Mb)

The off-grid

hybrid-field SGP

LN2
b
N2

u

+ 1
2L (1 + L)

×NbNuMbMu

L∑

l=1

[NbNu (2l + 1)]

+
L−1∑

i=0

L−i∑

l=1

[NbNu (2l + 1)]

LN2
b
N2

u

+L

2 (1 + L) [NbNu

×(NbNu + MbMu)]

4Niter(N
2
b
N2

u

+7L2NbNu + 8LNbNu)

In this table, Nb represents the number of antennas for the BS, with the corresponding number of sampled grids denoted as Mb. Similarly, Nu is the number of antennas for

the UE, with the corresponding number of sampled grids denoted as Mu. The parameter L signifies the total number of channel paths. Additionally, it is important to note

that the computational complexity of all the schemes in the table is calculated under the scenario where γ = 0.5. This implies that the number of far-field path components,

denoted as LF, is equal to the number of near-field path components, denoted as LN.

ÂN =
√
τ

√
p

Nu

[
a∗(r̂T,1, θ̂T,1)⊗ a(r̂R,1, θ̂R,1),

a∗(r̂T,2, θ̂T,2)⊗ a(r̂R,2, θ̂R,2), · · · ,

a∗(r̂T,LN
, θ̂T,LN

)⊗ a(r̂R,LN
, θ̂R,LN

)
]
,

(21)

where ÂF ∈ CNbNu×LF , ÂN ∈ CNbNu×LN , and Â = [ÂF, ÂN] ∈ CNbNu×L. Therefore, the recovered

channel vector is ĥ = Âĝ. To maximize the likelihood, we alternatively optimize the angles, distances,

and path gains, which is formulated as

min
ĝ,̂rR,near ,̂rT,near,θ̂R,near,θ̂T,near,θ̂R,far,θ̂T,far

∥∥∥yt − Âĝ

∥∥∥
2

. (22)

Since the optimization problem (22) is non-convex, the alternating minimization method is utilized to ob-

tain an effective solution. To express conciseness, let r̂ = [̂rTR,near, r̂
T
T,near]

T , θ̂ = [θ̂T
R,near, θ̂

T
T,near, θ̂

T
R,far, θ̂

T
T,far]

T .

For fixed r̂ and θ̂, the optimal solution for ĝ is given by

ĝopt = Â†yt. (23)
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Plug (23) into (22), the maximum-likelihood problem can be reformulated as

min
ĝ,̂r,θ̂

∥∥∥yt − Âĝ

∥∥∥
2

⇔ min
r̂,θ̂

tr
{
yH
t (1−Ψ)H (1−Ψ)yt

}

(a)⇔min
r̂,θ̂

L(r̂, θ̂) = −tr
{
yH
t Ψyt

}
,

(24)

where Ψ = ÂÂ†, and (a) holds by ΨHΨ = Ψ. Then, we can utilize an iterative gradient descent to

optimize the new minimization problem. In the n-th iteration, the angles are updated as

θ̂n = θ̂n−1 − ζT
1 ∇θ̂

L(r̂n−1, θ̂)|
θ̂=θ̂n−1 , (25)

where ζ1 is the step length vector. Note that for different angles θ̂R,near, θ̂T,near, θ̂R,far, and θ̂T,far, the

update strategy is the same, but the gradient and step length are different. As for the near-field distances,

the authors of [15] had demonstrated that 1/r is uniformly sampled in the polar domain. In this way, we

define 1
r̂
= [ 1

r̂R,1
, 1
r̂R,2

, · · · , 1
r̂R,LN

, 1
r̂T,1

, 1
r̂T,2

, · · · , 1
r̂T,LN

]T , which are updated as

1

r̂n
=

1

r̂n−1
− ζT

2 ∇ 1
r̂

L(r̂, θ̂n)|r̂=r̂n−1 , (26)

where ζ2 is the step length vector for the inverse of near-field distances. The step length vector ζ1 and ζ2

are chosen by Armijo backtracking line search [15] to guarantee the objective function is non-increasing.

The gradient ∇L(r̂, θ̂) is given in the appendix. Finally, the refined channel parameters can be utilized

to reconstruct the estimation of the channel, as shown in Steps 30-35 in Algorithm 2.

C. Computational Complexity

In this subsection, we analyze the number of complex-valued multiplications of the proposed channel

estimation schemes. To present the differences in computational complexity between the hybrid-field SGP

and hybrid-field OMP more intuitively, we assume LF = LN = L/2 for the complexity analysis. We then

divide the hybrid-field channel estimation schemes into four parts: the update of the support set, the LS

or LMS process, the update of the residual, and the reconstruction of the channel.

For the on-grif hybrid-field SGP with γ in Algorithm 1, the update of the support set is in Step 3 and

Step 15 and its number of complex-valued multiplications is L
2
NbNu (NbNu +MbMu) . The LMS process

is in Steps 4-10 and Steps 16-21 and its number of complex-valued multiplications is 2
∑L/2

l=1 [NbNu (2l + 1)].

The update of the residual is in Step 11 and Step 23 and its number of complex-valued multiplications is
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L
2
NbNu (NbNu +MbMu) . Finally, the reconstruction of the channel is in Steps 25-26 and its number of

complex-valued multiplications is NbNu (Nb +Nu) +NbMu (Nu +Mb) .

As for the off-grid hybrid-field SGP without γ in Algorithm 2, the update of the support set is in Step

4 and Step 16 and its number of complex-valued multiplications is LN2
bN

2
u + 1

2
L (1 + L)NbNuMbMu.

The LMS process is in Steps 5-9 and Steps 17-21 and its number of complex-valued multiplications is

∑L

l=1 (NbNu (2l + 1))+
∑L−1

γ=0

∑(L−γ)
l=1 (NbNu (2l + 1)). The update of the residual is in Step 10 and Step

22 and its number of complex-valued multiplications is LN2
b N

2
u+

L
2
(1 + L) [NbNu (NbNu +MbMu)] . Fi-

nally, the reconstruction of the channel is in Steps 30-35 and its number of complex-valued multiplications

also is 4Niter (N
2
bN

2
u + 7L2NbNu + 8LNbNu) .

Therefore, the complexity of all the considered channel estimation schemes are summarized in TA-

BLE II. From TABLE II, we can observe that the proposed on-grid hybrid-field SGP achieves a lower

computational complexity compared to the hybrid-field OMP with γ due to the employment of the LMS

algorithm. Similarly, the off-grid hybrid-field SGP also demonstrates reduced computational complexity

in comparison to the hybrid-field OMP without γ.

It is important to highlight that the proposed schemes are also applicable to XL-MIMO systems

employing uniform planar array (UPA)-based BS. When adapting these schemes to such systems, three

key areas require careful consideration. Firstly, by adopting Cartesian coordinates as a reference, channel

modeling will shift from a two-dimensional framework, characterized by the x and y axes, to a more

intricate three-dimensional model that also incorporates the z-axis. Moreover, the design of codebooks for

both far-field and near-field scenarios necessitates reconsideration and customization in light of the new

channel model. This adjustment is imperative to ensure that the codebooks can accurately represent all

possible spatial channels. Lastly, the adoption of the alternating minimization method in this context will

result in an escalation in the number of parameters that need refining, reflecting the increased intricacy

of the model. Despite these challenges, the foundational principles of the proposed algorithms remain

applicable, enabling effective channel estimation to be conducted within this more complex framework.

IV. SIMULATION RESULTS

In this section, we compare the performance of the proposed channel estimation schemes and the

exiting schemes. The simulation parameters are provided as follows: the carrier wavelength is λ = 0.01

meters, corresponding to a carrier frequency of f = 30 GHz. We assume that hybrid-field channel in

(3) consists of L = 10 path components. The pilot length is set to τ = 1 for simplicity. We set κ =
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Fig. 2. The NMSE performance comparison of the on-grid hybrid-field SGP with the conventional schemes for the scenario with γ.

10, indicating that the gain of the LoS path and the NLoS paths are generated as ᾱ0 =
√

10/11 and

αl ∼ CN (0, 1/11), respectively. Meanwhile, the distance between the BS and the UE and all the angles

are generated as U(10, 500) and U(−1, 1), respectively. In addition, the NMSE is defined as NMSE =

E

{
‖Ĥ−H‖2/‖H‖2

}
, where H is the hybrid-field channel and Ĥ is the estimation of the channel H.

Finally, the SNR for the pilot transmission and the uplink date transmission are defined as SNR = p/σ2

and SNR = p/σ2
u, respectively.

A. NMSE Performance

Fig. 2 shows a comparison of NMSE performance between the on-grid hybrid-field SGP with the hybrid-

field OMP in [23] and conventional schemes in the scenario with γ, where γ = 0.5 and µ = 0.4. The

number of antennas at the BS and the UE are set as Nb = 256 and Nu = 1, which corresponds to Mb = 381

and Mu = 1 sampled grids, respectively. It can be observed that the proposed on-grid hybrid-field SGP

provides the lowest NMSE value than that of the other three considered schemes, especially at low SNRs.

Specifically, at the SNRs of −6 dB and 0 dB, the performance gaps between the on-grid hybrid-field

SGP and the hybrid-field OMP with γ are 8.53 dB and 3.99 dB, respectively. This can be attributed to

the on-grid hybrid-field SGP employing the LMS algorithm for channel estimation, in contrast to the LS

algorithm employed in the hybrid-field OMP with γ, leading to enhanced noise resistance. Moreover, the

on-grid hybrid-field SGP exhibits significantly better NMSE performance compared to the far-field OMP,

with an improvement of 10.18 dB and 9.54 dB at SNRs of −6 dB and 0 dB, respectively. The reason is

that the far-field OMP focuses solely on the characteristics of far-field channels, resulting in a mismatch

with the structural characteristics of practical hybrid-field channels. Indeed, the on-grid hybrid-field SGP

significantly outperforms the hybrid-field OMP in low SNR scenarios due to the employment of the LMS
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Fig. 3. The NMSE performance comparison of the on-grid and off-grid hybrid-field SGP with the hybrid-field OMP for the scenarios with

γ and without γ.

algorithm. Besides, since the on-grid hybrid-field SGP and the hybrid-field OMP adopt the LMS and the

LS, respectively, after the pursuing process, these processes both behave similarly as MMSE that result in

a reduced performance gap between the on-grid hybrid-field SGP and the hybrid-field OMP. Overall, the

on-grid hybrid-field SGP provides the highest estimation accuracy compared to the other three considered

schemes.

Fig. 3 depicts the NMSE performance comparison between the on-grid and off-grid hybrid-field SGP

and the hybrid-field OMP across various SNR scenarios, where γ = 0.5, µ = 0.4, and ν = 0.03. The

first observation is that the on-grid hybrid-field SGP outperforms the hybrid-field OMP with γ, which

aligns with the observation in Fig. 2. However, it is worth noting that since the on-grid hybrid-field SGP

does not employ the strategy of selecting the minimal residual vector during the iterative matching pursuit

process, it exhibits slightly lower accuracy in identifying the most suitable supports. Consequently, this

results in a lower NMSE performance compared to the off-grid hybrid-field SGP. On the other hand,

although the hybrid-field OMP without γ in [27] can iteratively adjust the parameter γ to determine the

minimal residual vector and outperforms the hybrid-field OMP with γ, the hybrid-field OMP without γ

still provides a lower NMSE performance than the off-grid hybrid-field SGP. Indeed, the primary reason

for this performance gap is the employment of the LMS algorithm to minimize the mean square error

between the hybrid-field channel and its estimation and the alternating minimization approach to refine

channel parameters. All these results show that both the on-grid hybrid-field SGP and the off-grid hybrid-

field SGP can significantly enhance the estimation accuracy compared to the hybrid-field OMP with γ in

[23] and the hybrid-field OMP without γ in [27].

In Fig. 4 (a), we plot the NMSE performance comparison of the on-grid and off-grid hybrid-field SGP
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Fig. 4. The NMSE performance comparison of the on-grid and off-grid hybrid-field SGP with the existing schemes as a function of (a) the

number of antennas at the BS Nb and (b) the number of antennas at the UE Nu.

and the hybrid-field OMP as a function of the number of antennas at the BS (Nb), where the parameters

are set as follows: Nu = 1, γ = 0.5, µ = 0.4, and ν = 0.08, with a SNR of 0 dB. As Nb increases,

the performance of all the considered schemes also increases. This can be attributed to the fact that

an increase in Nb leads to a higher SNR at the BS. As a result, the considered schemes can operate

with improved performance and accuracy. Moreover, with Nb = 300, the proposed off-grid hybrid-field

SGP demonstrates an approximate NMSE performance improvement of 2.00 dB, 4.26 dB, and 5.83 dB

compared to the on-grid hybrid-field SGP, the hybrid-field OMP without γ, and the hybrid-field OMP

with γ, respectively. In addition, it is noteworthy that the performance gaps between the off-grid hybrid-

field SGP and the on-grid hybrid-field SGP, as well as between the hybrid-field OMP without γ and the

hybrid-field OMP with γ, initially increase rapidly with the growth of Nb but with diminishing returns.

This indicates that their performance gains gradually reduce as Nb increases. The reason for this trend

can be that the increment in the number of antennas at the BS results in a higher-dimensional received

signal. Consequently, channel estimation processes need to handle a greater number of parameters and the

considered channel estimation schemes become less effective when dealing with such high-dimensional

challenges.

In Fig. 4 (b), we compare the NMSE performance of the on-grid and off-grid hybrid-field SGP with

the existing schemes against the number of antennas at the UE (Nu), where Nb = 256, γ = 0.5, µ = 0.4,

and ν = 0.07, with the SNR of −6 dB. The first observation is that with the increase of Nu, the NMSE

performance of the hybrid-field OMP without γ and the hybrid-field OMP with γ both increase, while the

NMSE performance of the off-grid hybrid-field SGP and the on-grid hybrid-field SGP both decrease. The
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Fig. 5. The NMSE performance comparison of the on-grid and off-grid hybrid-field SGP with the existing schemes as a function of (a) γ

and (b) L.

rationale behind this phenomenon is that as Nu increases, there is an inevitable rise in channel sparsity.

However, an increase in Nu leads to a decrease in the performance of MMSE, while the performance

of LS remains unchanged. Consequently, the performance of both the hybrid-field OMP without γ and

with γ is expected to improve. In contrast, the performance of the on-grid and off-grid hybrid-field SGP

experience a decline. Nevertheless, it is important to note that the off-grid hybrid-field SGP consistently

outperforms the other considered channel estimation schemes and maintains the best NMSE performance

across the different values of Nu.

Fig. 5 (a) compares the NMSE performance of the on-grid and off-grid hybrid-field SGP and the hybrid-

field OMP as a function of γ for the scenarios with γ and without γ. Here, Nb = 256, Nu = 2, µ = 0.1, and

ν = 0.07, with the SNR of −6 dB. We can find that the proposed off-grid hybrid-field SGP consistently

achieves the lowest NMSE value across all values of the parameter γ. Specifically, the off-grid hybrid-field

SGP provides an average NMSE performance gain of 3.89 dB and 4.92 dB compared to MMSE and the

hybrid-field OMP without γ. This once again verifies the effectiveness of the off-grid hybrid-field SGP in

the hybrid-field channel estimation. In addition, the off-grid hybrid-field SGP outperforms both the on-grid

hybrid-field SGP and the hybrid-field OMP with γ for all ranges of γ. Notably, in scenarios where γ = 1

and γ = 0 (representing entirely far-field and near-field scenarios, respectively), the off-grid hybrid-field

SGP exhibits a significantly superior NMSE performance. This notable improvement can be attributed to

potential misalignment between the distance and angle parameters of each path and the sampled grids

of the angular-domain or the polar-domain transformation matrices. This misalignment occurs due to the

limited dimensions of these matrices and can lead to NMSE degradation for the on-grid hybrid-field SGP
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Fig. 6. The achievable rates of LS, the hybrid-field OMP, the on-grid and off-grid hybrid-field SGP, and the perfect CSI against (a) the SNR

and (b) the number of antennas at the BS.

and the hybrid-field OMP with γ. However, the proposed off-grid hybrid-field SGP can iteratively adjust

the value of γ to identify the most matched polar-domain and angular-domain supports and then refine

channel parameters, enabling effective recovery of the channel with improved estimation performance.

Fig. 5 (b) shows a comparison of the NMSE performance as a function of the number of channel

paths L, with the following parameters: Nb = 256, Nu = 1, γ = 0.5, µ = 0.8, ν = 0.08, and a SNR

of 0 dB. Initially, it is evident that the NMSE performance for the considered schemes declines as L

increases. This trend is attributed to the diminishing channel sparsity with more channel paths, adversely

affecting the performance of CS-based approaches. Furthermore, the performance gap between the hybrid-

field OMP with γ and the hybrid-field OMP without γ narrows with an increase in L. Conversely,

the performance gap between the on-grid hybrid-field SGP and the off-grid hybrid-field SGP remains

constant. This phenomenon suggests that the advantage of exploring all potential γ values diminishes

with more channel paths, whereas the off-grid hybrid-field SGP continues to achieve notable performance

enhancements through iterative channel parameter refinement using the alternating minimization approach.

Overall, the simulation outcomes underscore the robustness of the proposed algorithms against various

factors, including noise levels, number of antennas, the proportion of far and near field paths γ, and the

number of channel paths.

B. Achievable Rate

Fig. 6 (a) compares the achievable rates of LS, the hybrid-field OMP, the on-grid and off-grid hybrid-

field SGP, and the perfect CSI against the SNR. The following parameters are adopted: Nb = 256, Nu = 1,
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γ = 0.4, µ = 0.4, ν = 0.07. The result of the perfect CSI is based on setting V = H. The first observation

is that as the SNR increases, the achievable rates for all the schemes improve, while the performance gaps

between the achievable rates for the perfect CSI and those of all the channel estimation schemes become

narrow. This can be attributed to two factors: first, increasing the SNR can increase the expected signal

power, leading to improved achievable rates. Second, as the SNR increases, the estimation accuracy of

all the channel estimation schemes is enhanced, mitigating the adverse impact of imperfect CSI on the

achievable rates. Moreover, the proposed off-grid hybrid-field SGP consistently outperforms other channel

estimation schemes in terms of achievable rates. This superiority can be attributed to the excellent NMSE

performance achieved by the off-grid hybrid-field SGP, resulting in a more accurate acquisition of CSI.

Therefore, the BS can utilize more precise estimated channel information when processing signals from the

BS, leading to higher achievable rates. Fig. 6 (b) provides a comprehensive comparison of the achievable

rates against the number of antennas at the BS. These results are presented for the following parameters:

Nu = 1, γ = 0.3, µ = 0.4, ν = 0.08, and a SNR of −4 dB. It is evident that the achievable rates for

all the schemes increase as the number of antennas at the BS, denoted as Nb, increases. This growth

can be attributed to the rise in the SNR at the BS with an increase in Nb. As a result, the considered

schemes can operate with improved NMSE performance, leading to higher achievable rates. Moreover,

the proposed hybrid-field SGP can achieve higher achievable rates compared to other channel estimation

schemes, irrespective of the scenarios with γ or without γ.

V. CONCLUSIONS

In this work, we proposed two novel hybrid-field channel estimation schemes, namely the on-grid

hybrid-field SGP and the off-grid hybrid-field SGP, aimed at enhancing the precision of the hybrid-field

channel estimation within XL-MIMO systems with a multi-antenna UE. It is clear that the employment of

the LMS algorithm in both the on-grid and off-grid hybrid-field SGP can significantly improve the quality

of the hybrid-field channel estimation compared to the hybrid-field OMP with γ and the hybrid-field OMP

without γ. This improvement is particularly pronounced at lower SNR values. Through simulations, we

demonstrated that the proposed schemes can provide superior NMSE performance, while simultaneously

offering reduced computational complexity in the hybrid-field channel estimation of XL-MIMO systems.

What is even more interesting is that the off-grid hybrid-field SGP can effectively keep a satisfactory

NMSE performance, irrespective of the values of γ. As for future works, we will further investigate the
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impact of the spatial non-stationary characteristics and the EM polarization property of near-field channels

on the estimation performance for XL-MIMO systems.

APPENDIX

This appendix derive the explicit derivation of ∇L(r̂, θ̂) with respect to 1
r̂
= [ 1

r̂R,1
, 1
r̂R,2

, · · · , 1
r̂R,LN

, 1
r̂T,1

, 1
r̂T,2

, · · · , 1
r̂T,L

and θ̂ = [θ̂T
R,near, θ̂

T
T,near, θ̂

T
R,far, θ̂

T
T,far]

T . For any variable z ∈ {1
r̂
, θ̂}, the gradient of L(r̂, θ̂) can be

computed as

∂L
(
r̂, θ̂
)

∂z
= −tr

{
yH
t

∂Ψ

∂z
yt

}
. (27)

Since Ψ = ÂÂ† and Â† = (ÂHÂ)−1ÂH , we have

∂Ψ

∂z
=

∂Â

∂z
(ÂHÂ)−1ÂH + Â

∂(ÂHÂ)
−1

∂z
ÂH

+ Â(ÂHÂ)−1∂Â
H

∂z
.

(28)

According to the inverse matrix differentiation law that dA−1 = −A−1 (dA)A−1, the gradient of (ÂHÂ)
−1

is
∂(ÂHÂ)

−1

∂z
=− (ÂHÂ)−1

(
∂ÂH

∂z
Â+ ÂH ∂Â

∂z

)

× (ÂHÂ)−1.

(29)

Therefore, the remaining task is to derive the gradient of Â with respect to θ̂R,far, θ̂T,far, θ̂T,near, θ̂R,near,

1
r̂R,near

, and 1
r̂T,near

.

For the far-field angle θ̂T,lf ∈ [θ̂T,1, θ̂T,2, · · · , θ̂T,LF
]T , we have

∂Â

∂θ̂T,lf

= [0, · · · , 0,
√

τp

Nu

∂a∗(θ̂T,lf )

∂θ̂T,lf

⊗ a(θ̂R,lf ), 0, · · · , 0], (30)

and the nu-th entry of ∂a∗(θ̂T,lf )/∂θ̂T,lf is −j(nu−1)πe−j(nu−1)πθ̂T,lf /
√
Nu. For the far-field angle θ̂R,lf ∈

[θ̂R,1, θ̂R,2, · · · , θ̂R,LF
]T , we have

∂Â

∂θ̂R,lf

=

[
0, · · · , 0,

√
τp

Nu

a∗(θ̂T,lf )⊗
∂a(θ̂R,lf )

∂θ̂R,lf

, 0, · · · , 0
]
. (31)
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For the near-field angle θ̂T,ln ∈ [θ̂T,1, θ̂T,2, · · · , θ̂T,LN
]T , we have

∂Â

∂θ̂T,ln

=

√
τp

Nu

[0, · · · , 0,

∂a∗(r̂T,ln, θ̂T,ln)

∂θ̂T,ln

⊗ a(r̂R,ln , θ̂R,ln), 0, · · · , 0],
(32)

and the nu-th entry of ∂a∗(r̂T,ln, θ̂T,ln)/∂θ̂T,ln is j 2π
λ

2nu−Nu−1
2

λ
2

1√
Nu

e
j 2π

λ

(

r
(nu)
T,ln

−rT,ln

)

. For the near-field

distance 1
r̂T,ln

∈ [ 1
r̂T,1

, 1
r̂T,2

, · · · , 1
r̂T,LN

]T , we have

∂Â

∂ 1
r̂T,ln

=

√
τp

Nu

[0, · · · , 0,

∂a∗(r̂T,ln , θ̂T,ln)

∂ 1
r̂T,ln

⊗ a(r̂R,ln, θ̂R,ln), 0, · · · , 0],
(33)

and the nu-th entry of ∂a∗(r̂T,ln, θ̂T,ln)/∂
(

1
r̂T,ln

)
is j 2π

λ

(
−
(
2nu−Nu−1

2
λ
2

)2) 1√
Nu

e
j 2π

λ

(

r
(nu)
T,ln

−rT,ln

)

. As for the

near-field angle θ̂R,ln ∈ [θ̂R,1, θ̂R,2, · · · , θ̂R,LN
]T and distance 1

r̂R,ln
∈ [ 1

r̂R,1
, 1
r̂R,2

, · · · , 1
r̂R,LN

]T , their gradients

are similar to (32) and (33), respectively. Finally, collecting all of the angle and distance terms in a column

vector, we can obtain the gradient ∇
θ̂
L(r̂n−1, θ̂) and ∇ 1

r̂

L(r̂, θ̂n).
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